यदि ${\left( {\frac{2}{x} + {x^{{{\log }_e}x}}} \right)^6}(x > 0)$ के द्विपद प्रसार का चौथा पद $20\times 8^7$ है, तो $x$ का एक मान है :
$8^3$
$8^{-2}$
$8$
$8^2$
गुणनफल $(1+x)(1-x)^{10}\left(1+x+x^{2}\right)^{9}$ में $x^{18}$ का गुणांक है
यदि ${(1 + x)^n}$ के विस्तार में $p$ वें, $(p + 1)$ वें तथा $(p + 2)$ वें पदों के गुणांक समांतर श्रेणी में हों, तो
$(1 + x)\,{(1 - x)^n}$ के प्रसार में ${x^n}$ का गुणांक है
${(1 + x)^n}$ के विस्तार में $p$ वें तथा $(p + 1)$ वें पदों के गुणांक क्रमश: $p $ व $q$ हों, तो $p + q = $
यदि $\left(t^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}, x \geq 0$, के प्रसार में $t$, से स्वतंत्र पद का अधिकतम मान $K$ है, तो $8 K$ बराबर है $...........$